(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
fib(N) → sel(N, fib1(s(0), s(0)))
fib1(X, Y) → cons(X, n__fib1(Y, add(X, Y)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
fib1(X1, X2) → n__fib1(X1, X2)
activate(n__fib1(X1, X2)) → fib1(X1, X2)
activate(X) → X
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
fib(N) → sel(N, fib1(s(0'), s(0')))
fib1(X, Y) → cons(X, n__fib1(Y, add(X, Y)))
add(0', X) → X
add(s(X), Y) → s(add(X, Y))
sel(0', cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
fib1(X1, X2) → n__fib1(X1, X2)
activate(n__fib1(X1, X2)) → fib1(X1, X2)
activate(X) → X
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
fib(N) → sel(N, fib1(s(0'), s(0')))
fib1(X, Y) → cons(X, n__fib1(Y, add(X, Y)))
add(0', X) → X
add(s(X), Y) → s(add(X, Y))
sel(0', cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
fib1(X1, X2) → n__fib1(X1, X2)
activate(n__fib1(X1, X2)) → fib1(X1, X2)
activate(X) → X
Types:
fib :: 0':s → 0':s
sel :: 0':s → n__fib1:cons → 0':s
fib1 :: 0':s → 0':s → n__fib1:cons
s :: 0':s → 0':s
0' :: 0':s
cons :: 0':s → n__fib1:cons → n__fib1:cons
n__fib1 :: 0':s → 0':s → n__fib1:cons
add :: 0':s → 0':s → 0':s
activate :: n__fib1:cons → n__fib1:cons
hole_0':s1_0 :: 0':s
hole_n__fib1:cons2_0 :: n__fib1:cons
gen_0':s3_0 :: Nat → 0':s
gen_n__fib1:cons4_0 :: Nat → n__fib1:cons
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
sel, add
(6) Obligation:
TRS:
Rules:
fib(
N) →
sel(
N,
fib1(
s(
0'),
s(
0')))
fib1(
X,
Y) →
cons(
X,
n__fib1(
Y,
add(
X,
Y)))
add(
0',
X) →
Xadd(
s(
X),
Y) →
s(
add(
X,
Y))
sel(
0',
cons(
X,
XS)) →
Xsel(
s(
N),
cons(
X,
XS)) →
sel(
N,
activate(
XS))
fib1(
X1,
X2) →
n__fib1(
X1,
X2)
activate(
n__fib1(
X1,
X2)) →
fib1(
X1,
X2)
activate(
X) →
XTypes:
fib :: 0':s → 0':s
sel :: 0':s → n__fib1:cons → 0':s
fib1 :: 0':s → 0':s → n__fib1:cons
s :: 0':s → 0':s
0' :: 0':s
cons :: 0':s → n__fib1:cons → n__fib1:cons
n__fib1 :: 0':s → 0':s → n__fib1:cons
add :: 0':s → 0':s → 0':s
activate :: n__fib1:cons → n__fib1:cons
hole_0':s1_0 :: 0':s
hole_n__fib1:cons2_0 :: n__fib1:cons
gen_0':s3_0 :: Nat → 0':s
gen_n__fib1:cons4_0 :: Nat → n__fib1:cons
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_n__fib1:cons4_0(0) ⇔ n__fib1(0', 0')
gen_n__fib1:cons4_0(+(x, 1)) ⇔ cons(0', gen_n__fib1:cons4_0(x))
The following defined symbols remain to be analysed:
sel, add
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
sel(
gen_0':s3_0(
n6_0),
gen_n__fib1:cons4_0(
1)) →
gen_0':s3_0(
0), rt ∈ Ω(1 + n6
0)
Induction Base:
sel(gen_0':s3_0(0), gen_n__fib1:cons4_0(1)) →RΩ(1)
0'
Induction Step:
sel(gen_0':s3_0(+(n6_0, 1)), gen_n__fib1:cons4_0(1)) →RΩ(1)
sel(gen_0':s3_0(n6_0), activate(gen_n__fib1:cons4_0(0))) →RΩ(1)
sel(gen_0':s3_0(n6_0), fib1(0', 0')) →RΩ(1)
sel(gen_0':s3_0(n6_0), cons(0', n__fib1(0', add(0', 0')))) →RΩ(1)
sel(gen_0':s3_0(n6_0), cons(0', n__fib1(0', 0'))) →IH
gen_0':s3_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
fib(
N) →
sel(
N,
fib1(
s(
0'),
s(
0')))
fib1(
X,
Y) →
cons(
X,
n__fib1(
Y,
add(
X,
Y)))
add(
0',
X) →
Xadd(
s(
X),
Y) →
s(
add(
X,
Y))
sel(
0',
cons(
X,
XS)) →
Xsel(
s(
N),
cons(
X,
XS)) →
sel(
N,
activate(
XS))
fib1(
X1,
X2) →
n__fib1(
X1,
X2)
activate(
n__fib1(
X1,
X2)) →
fib1(
X1,
X2)
activate(
X) →
XTypes:
fib :: 0':s → 0':s
sel :: 0':s → n__fib1:cons → 0':s
fib1 :: 0':s → 0':s → n__fib1:cons
s :: 0':s → 0':s
0' :: 0':s
cons :: 0':s → n__fib1:cons → n__fib1:cons
n__fib1 :: 0':s → 0':s → n__fib1:cons
add :: 0':s → 0':s → 0':s
activate :: n__fib1:cons → n__fib1:cons
hole_0':s1_0 :: 0':s
hole_n__fib1:cons2_0 :: n__fib1:cons
gen_0':s3_0 :: Nat → 0':s
gen_n__fib1:cons4_0 :: Nat → n__fib1:cons
Lemmas:
sel(gen_0':s3_0(n6_0), gen_n__fib1:cons4_0(1)) → gen_0':s3_0(0), rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_n__fib1:cons4_0(0) ⇔ n__fib1(0', 0')
gen_n__fib1:cons4_0(+(x, 1)) ⇔ cons(0', gen_n__fib1:cons4_0(x))
The following defined symbols remain to be analysed:
add
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
add(
gen_0':s3_0(
n326_0),
gen_0':s3_0(
b)) →
gen_0':s3_0(
+(
n326_0,
b)), rt ∈ Ω(1 + n326
0)
Induction Base:
add(gen_0':s3_0(0), gen_0':s3_0(b)) →RΩ(1)
gen_0':s3_0(b)
Induction Step:
add(gen_0':s3_0(+(n326_0, 1)), gen_0':s3_0(b)) →RΩ(1)
s(add(gen_0':s3_0(n326_0), gen_0':s3_0(b))) →IH
s(gen_0':s3_0(+(b, c327_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
TRS:
Rules:
fib(
N) →
sel(
N,
fib1(
s(
0'),
s(
0')))
fib1(
X,
Y) →
cons(
X,
n__fib1(
Y,
add(
X,
Y)))
add(
0',
X) →
Xadd(
s(
X),
Y) →
s(
add(
X,
Y))
sel(
0',
cons(
X,
XS)) →
Xsel(
s(
N),
cons(
X,
XS)) →
sel(
N,
activate(
XS))
fib1(
X1,
X2) →
n__fib1(
X1,
X2)
activate(
n__fib1(
X1,
X2)) →
fib1(
X1,
X2)
activate(
X) →
XTypes:
fib :: 0':s → 0':s
sel :: 0':s → n__fib1:cons → 0':s
fib1 :: 0':s → 0':s → n__fib1:cons
s :: 0':s → 0':s
0' :: 0':s
cons :: 0':s → n__fib1:cons → n__fib1:cons
n__fib1 :: 0':s → 0':s → n__fib1:cons
add :: 0':s → 0':s → 0':s
activate :: n__fib1:cons → n__fib1:cons
hole_0':s1_0 :: 0':s
hole_n__fib1:cons2_0 :: n__fib1:cons
gen_0':s3_0 :: Nat → 0':s
gen_n__fib1:cons4_0 :: Nat → n__fib1:cons
Lemmas:
sel(gen_0':s3_0(n6_0), gen_n__fib1:cons4_0(1)) → gen_0':s3_0(0), rt ∈ Ω(1 + n60)
add(gen_0':s3_0(n326_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n326_0, b)), rt ∈ Ω(1 + n3260)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_n__fib1:cons4_0(0) ⇔ n__fib1(0', 0')
gen_n__fib1:cons4_0(+(x, 1)) ⇔ cons(0', gen_n__fib1:cons4_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
sel(gen_0':s3_0(n6_0), gen_n__fib1:cons4_0(1)) → gen_0':s3_0(0), rt ∈ Ω(1 + n60)
(14) BOUNDS(n^1, INF)
(15) Obligation:
TRS:
Rules:
fib(
N) →
sel(
N,
fib1(
s(
0'),
s(
0')))
fib1(
X,
Y) →
cons(
X,
n__fib1(
Y,
add(
X,
Y)))
add(
0',
X) →
Xadd(
s(
X),
Y) →
s(
add(
X,
Y))
sel(
0',
cons(
X,
XS)) →
Xsel(
s(
N),
cons(
X,
XS)) →
sel(
N,
activate(
XS))
fib1(
X1,
X2) →
n__fib1(
X1,
X2)
activate(
n__fib1(
X1,
X2)) →
fib1(
X1,
X2)
activate(
X) →
XTypes:
fib :: 0':s → 0':s
sel :: 0':s → n__fib1:cons → 0':s
fib1 :: 0':s → 0':s → n__fib1:cons
s :: 0':s → 0':s
0' :: 0':s
cons :: 0':s → n__fib1:cons → n__fib1:cons
n__fib1 :: 0':s → 0':s → n__fib1:cons
add :: 0':s → 0':s → 0':s
activate :: n__fib1:cons → n__fib1:cons
hole_0':s1_0 :: 0':s
hole_n__fib1:cons2_0 :: n__fib1:cons
gen_0':s3_0 :: Nat → 0':s
gen_n__fib1:cons4_0 :: Nat → n__fib1:cons
Lemmas:
sel(gen_0':s3_0(n6_0), gen_n__fib1:cons4_0(1)) → gen_0':s3_0(0), rt ∈ Ω(1 + n60)
add(gen_0':s3_0(n326_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n326_0, b)), rt ∈ Ω(1 + n3260)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_n__fib1:cons4_0(0) ⇔ n__fib1(0', 0')
gen_n__fib1:cons4_0(+(x, 1)) ⇔ cons(0', gen_n__fib1:cons4_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
sel(gen_0':s3_0(n6_0), gen_n__fib1:cons4_0(1)) → gen_0':s3_0(0), rt ∈ Ω(1 + n60)
(17) BOUNDS(n^1, INF)
(18) Obligation:
TRS:
Rules:
fib(
N) →
sel(
N,
fib1(
s(
0'),
s(
0')))
fib1(
X,
Y) →
cons(
X,
n__fib1(
Y,
add(
X,
Y)))
add(
0',
X) →
Xadd(
s(
X),
Y) →
s(
add(
X,
Y))
sel(
0',
cons(
X,
XS)) →
Xsel(
s(
N),
cons(
X,
XS)) →
sel(
N,
activate(
XS))
fib1(
X1,
X2) →
n__fib1(
X1,
X2)
activate(
n__fib1(
X1,
X2)) →
fib1(
X1,
X2)
activate(
X) →
XTypes:
fib :: 0':s → 0':s
sel :: 0':s → n__fib1:cons → 0':s
fib1 :: 0':s → 0':s → n__fib1:cons
s :: 0':s → 0':s
0' :: 0':s
cons :: 0':s → n__fib1:cons → n__fib1:cons
n__fib1 :: 0':s → 0':s → n__fib1:cons
add :: 0':s → 0':s → 0':s
activate :: n__fib1:cons → n__fib1:cons
hole_0':s1_0 :: 0':s
hole_n__fib1:cons2_0 :: n__fib1:cons
gen_0':s3_0 :: Nat → 0':s
gen_n__fib1:cons4_0 :: Nat → n__fib1:cons
Lemmas:
sel(gen_0':s3_0(n6_0), gen_n__fib1:cons4_0(1)) → gen_0':s3_0(0), rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_n__fib1:cons4_0(0) ⇔ n__fib1(0', 0')
gen_n__fib1:cons4_0(+(x, 1)) ⇔ cons(0', gen_n__fib1:cons4_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
sel(gen_0':s3_0(n6_0), gen_n__fib1:cons4_0(1)) → gen_0':s3_0(0), rt ∈ Ω(1 + n60)
(20) BOUNDS(n^1, INF)